

Research Article Clinical Biotechnology and Microbiology

ISSN: 2575-4750

Infectious Disease Diagnostics and Public Health Surveillance by Precision and Rapid Metagenomics: An Update

Attapon Cheepsattayakorn^{1*} and Ruangrong Cheepsattayakorn²

¹10th Zonal Tuberculosis and Chest Disease Center, Chiang Mai, Thailand ²Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

*Corresponding Author: Attapon Cheepsattayakorn, 10th Zonal Tuberculosis and Chest Disease Center, 143 Sridornchai Road, Changklan, Muang, Chiang Mai, 50100, Thailand.

Received: March 25, 2019; Published: April 04, 2019

Abstract

Metagenomic next-generation sequencing (NGS) can generate a single sequence from each DNA or cDNA, allowing differentiation between the origin of sequence fragments and resolution of host and microbial sequences containing in mixed specimens. By removal of any reads mapping to human genome in metagenomic NGS, all remaining nonhuman genome sequences are able to be compared to a database of known sequences to detect the unknown sequences. In comparison to polymerase chain reaction (PCR) method, metagenomic NGS needs no assumptions or prior knowledge of the type of causing pathogenic microorganisms that are needed in PCR test. Nevertheless, metagenomic NGS wastes more cost because of dominated sequencing reaction by host rather than pathogen sequences although it can identify as few as 9 in 68 million reads of pathogen sequences. In conclusion, once the sensitivity and specificity of metagenomic NGS technologies are validated and clinically available, their potential application can lower the number of undiagnosed infectious cases, improve patient care, and enlarge public health surveillance attempts.

Key Words: Metagenomics; Infectious Diseases; Health Surveillance

Abbreviations: AMR : Antimicrobial Resistance, CD : Celiac Disease, cDNA : complementary Deoxyribonucleic Acid, COPD : Chronic Obstructive Pulmonary Disease, FEV1 : Forced Expiratory Volume in one second, FVC : Forced Vital Capacity, GFD : Gluten-Free Diet, NGS : Next-Generation Sequencing, PCR : Polymerase Chain Reaction, rRNA : ribosomal Ribonucleic Acid, UK : United Kingdom

Volume 4 Issue 1 March 2019 © All Copy Rights are Reserved by Attapon Cheepsattayakorn and Ruangrong Cheepsattayakorn.

Objective of the Study

The authors aim to perform a critical review and strong summary of existing utility of the next-generation sequencing (NGS) technologies in the diagnosis of infectious diseases and public health surveillance.

Citation: Attapon Cheepsattayakorn and Ruangrong Cheepsattayakorn. "Infectious Disease Diagnostics and Public Health Surveillance by Precision and Rapid Metagenomics: An Update". *Clinical Biotechnology and Microbiology* 4.1 (2019): 7-10.

8

Introduction

With routine culture-based methods, a large number of microorganisms are difficult to grow [1] that contribute to the misuse of antimicrobial agents in both humans and animals and finally, leading to antimicrobial resistance both in developing and developed countries [2]. As deep sequencing, metagenomic NGS generates a single sequence from each fragment of deoxyribonucleic acid (DNA) or complementary DNA (cDNA) that present in a specimen, allowing differentiation between the origin of sequence fragments, and resolution of host and microbial sequences containing in mixed specimens [3, 4]. To exclude the possibility of identified microorganism mimicking an artefact of the bioinformatics analysis, an alternative molecular method, such as polymerase chain reaction (PCR), can be used to confirm the presence of the detected microorganisms with DNA genomes [3]. By removal of any reads mapping to human genome in metagenomic NGS, all remaining nonhuman genome sequences are compared to a database of known sequences to identify the unknown sequences [3]. No assumptions or prior knowledge of the type of causing pathogenic microorganisms is required in metagenomic NGS as needed in PCR [3]. Metagenomic NGS composes of specimen processing (nucleic acid extraction and library preparation and sequencing) and bioinformatics [5].

A recent study revealed that the diagnostic yield for metagenomics in the diagnosis of encephalitis is 50% [3]. Effecting clinical outcomes in a case of neuroleptospirosis was revealed in a metagenomic NGS-based results [6]. Metagenomic NGS has three advantage: 1) being able to identify a microbe that is known to cause a patient's disease phenotype and rarely tested for because of its low pre-test probability of being the etiologic agent, 2) being able to identify an entirely microbe for which a traditional candidate-based test does not exist, and 3) being able to identify a known microbe that is not known to cause a particular patient's disease phenotype [7]. A recent study in 3 study groups by 16S rRNA gene sequencing (20 adult patients with active celiac disease (CD), 6 CD patients on a gluten-free diet (GFD), and 15 controls) demonstrated that the active CD patients (26%) had significantly higher relative abundance of Neisseria genus, compared to either GFD patients (4%) or controls (10%) (p = 0.03) [8]. A recent study in eight chronic-obstructive-pulmonary-disease (COPD) patients (5 males and 3 females, each older than 40 years (mean age = 68), each at least ten pack-year smoker, and post-bronchodilator forced expiratory volume in one second (FEV₁)/forced vital capacity (FVC) < 0.07) from two United Kingdom (UK) hospitals demonstrated that eight bacterial genera were identified in all 18 sputum specimens, Staphylococcus, Haemophilus, Strepto-coccus, Neisseria, Pseudomonas, Lactobacillus, Veillonella, and Ochrobactrum [9].

Limitations of metagenomic diagnostics

Recognition of problem with pan-bacterial metagenomic NGS detection can be confounded as well as in PCR by differences between specimens and specimen types, such as the ratio of host: pathogenic microorganism sequences that depends on the degree of specimen multiplexing and sequencing chemistry [10]. Metagenomic NGS wastes cost due to dominated sequencing reaction by host rather than pathogen sequences. Metagenomic NGS can detect as few as 9 in 68 million reads of pathogen sequences [11]. Depletion of host DNA or RNA prior to sequencing is needed to overcome this problem [3]. In Japanese-encephalitis-virus (JEV) infection, metagenomic NGS is unable to critically improve the diagnostic yield, whereas the most sensitive RT-qPCR detects RNA in less than 10% of cases [12]. The principal diagnosis of JEV infection is serology [12].

Discussion

In regarding pathogen identity and antimicrobial resistance (AMR), a molecular diagnostic framework with accurate and rapid information would reduce the prescription of ineffective antimicrobials and reduce AMR, in addition to controlling disease outbreaks and information of the course of infection that contribute to decreasing cost of patient care and survival [13]. Regarding microbial ecology, metagenomic NGS technologies are rapidly growing to be the major source of information [4]. COPD exacerbation related to pathogenic microorganisms has been well documented [14] Microbiomic changes as COPD progress have been investigated [15-17]. Some investigators are validating the use of metagenomic NGS for clinical use [18]. Prospective studies are already underway to evaluate whether metagenomic NGS can be applied to improve costs and patient outcome, namely "The Precision Diagnosis of Acute Infectious Disease

Citation: Attapon Cheepsattayakorn and Ruangrong Cheepsattayakorn. "Infectious Disease Diagnostics and Public Health Surveillance by Precision and Rapid Metagenomics: An Update". *Clinical Biotechnology and Microbiology* 4.1 (2019): 7-10.

Infectious Disease Diagnostics and Public Health Surveillance by Precision and Rapid Metagenomics: An Update

9

(PDAID)" [6,19]. Statistical scoring is necessary to enhance the of metagenomic NGS to discriminate between unimportant contaminants and exact pathogenic microorganisms due to unbiased nature of metagenomic NGS making polymicrobial and complicated data sets [20].

Conclusion

In a broad range of human pathogenic microorganisms using a single diagnostic test, metagenomic NGS is an increasing rapid and low-cost test of screening human specimens. Once the sensitivity and specificity of metagenomic NGS is validated and clinically available, its potential application can improve patient care, lower the number of undiagnosed infectious cases, and enlarge public health surveillance attempts.

Acknowledgements

Dr. Attapon Cheepsattayakorn conducted the study framework and wrote the manuscript. Associate Professor Dr. Ruangrong Cheepsattayakorn contributed to scientific content and assistance in manuscript writing. Both authors read and approved the final version of the manuscript. The authors disclose no funding sources.

Competing Interests

The authors declare that they have no actual or potential competing financial interests.

References

- 1. Vartoukian SR., et al. "Strategies for culture of "unculturable" bacteria. FEMS Microbiology Letter 309.1(2010): 1-7.
- 2. Liu YY., *et al.* "Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study". *Lancet Infectious Diseases* 16.2 (2016): 161-168.
- 3. Brown JR ., *et al.* "Encephalitis diagnosis using metagenomics : application of next- generation sequencing for undiagnosed cases". *Journal of Infection* 76.3 (2018): 225-240.
- 4. Albanese D and Donati C. "Strain profiling and epidemiology of bacterial species from metagenomic sequencing". *Nature Communications* 8.1 (2017): 2260. DOI: 10.1038/s41467-017-02209-5.
- 5. Afshinnekoo E., *et al.* "Precision metagenomics : rapid metagenomic analyses for infectious disease diagnostics and public health surveillance ". *Journal of Biomolecular Techniques* 28.1 (2017): 40-45.
- 6. Wilson MR., *et al.* "Actional diagnosis of neuroleptospirosis by next-generation sequencing". *New England Journal of Medicine* 370.25 (2014): 2408-2417.
- 7. Schubert RD and Wilson MR. "A tale of two approaches: how metagenomics and proteomics are shaping the future of encephalitis diagnostics". *Current Opinion in Neurology* 28.3 (2015): 283-287.
- 8. Valeria DA., *et al.* "Metagenomics reveals dysbiosis and a potentially pathogenic N. flavescens strain in duodenum of adult celiac patients". *American Journal of Gastroenterology* 111.6 (2016): 879-890.
- 9. Cameron SJS., *et al.* "Metagenomic sequencing of chronic obstructive pulmonary disease upper bronchial tract microbiome reveals functional changes associated with disease severity". *PLoS One* 11.2 (2016): e0149095.
- 10. Harris KA and Hartley JC. "Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service". *Journal of Medical Microbiology* 52.Pt 8 (2003): 685-691.
- 11. Chan BK., et al. "Deep sequencing to identify the causes of viral encephalitis". PLoS One 9.4 (2014) : e93993
- 12. World Health Organization S-EAatWP, World Health Organization. Japanese encephalitis surveillance standards. In: WHO-recommended standards for surveillance of selected vaccine-preventable diseases WHO/V&B/03.01. s
- 13. Kaplan RS and Porter ME. "How to solve the cost crisis in health care". *Harvard Business Review* 89.9 (2011): 46-52.
- 14. Patel IS., *et al.* "Relationship between bacterial colonization and the frequency, character, and severity of COPD exacerbations". *Thorax* 57.9 (2002): 759-764.

Citation: Attapon Cheepsattayakorn and Ruangrong Cheepsattayakorn. "Infectious Disease Diagnostics and Public Health Surveillance by Precision and Rapid Metagenomics: An Update". *Clinical Biotechnology and Microbiology* 4.1 (2019): 7-10.

Infectious Disease Diagnostics and Public Health Surveillance by Precision and Rapid Metagenomics: An Update

10

- 15. Erb-Downward JR., et al. "Analysis of the lung microbiome in the "healthy" smoker and in COPD". PLoS One 6.2 (2011): e16384.
- 16. Pragman AA., *et al.* "The lung microbiome in moderate and severe chronic obstructive pulmonary disease". *PLoS One* 7.10 (2012): e47305.
- 17. Sze MA., *et al.* "The lung tissue microbiome in chronic obstructive pulmonary disease". *American Journal of Respiratory and Critical Care Medicine* 185.10 (2012): 1073-1080.
- 18. Schlaberg R., *et al.* "Validation of metagenomic next-generation sequencing tests for universal pathogen detection". *Archives of Pathology and Laboratory Medicine* 141.6 (2017): 776-786.
- 19. Chiu CY., *et al.* "Diagnosis of fatal human case of St. Louis encephalitis virus infection by metagenomic sequencing, California, 2016". *Emerging Infectious Diseases* 23.10 (2017): 1964-1968.
- 20. Wilson MR., *et al.* "Chronic meningitis investigated via metagenomic next-generation sequencing". *JAMA Neurology* 75.8 (2018): 947-955.

Submit your next manuscript to Scientia Ricerca Open Access and benefit from: → Prompt and fair double blinded peer review from experts → Fast and efficient online submission → Timely updates about your manuscript status → Sharing Option: Social Networking Enabled → Open access: articles available free online → Global attainment for your research Submit your manuscript at: https://scientiaricerca.com/submit-manuscript.php