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Different researchers have observed that subjects with insulin resistance show changes in energy metabolism. [1] Showed that in 
overweight women the insulin resistant group oxidized less carbohydrates than the control group [2]. Observed in type 2 diabetics, obese, 
a reduction in the oxidation of plasma fatty acids, but without differences in the total oxidation of fats and carbohydrates, when compared 
to the control group. In another study [3] studied non-obese type 2 diabetic patients. In this study, no changes were found in the oxidation 
of fats or carbohydrates. It should be noted in the last two studies cited that the subjects were type 2 diabetic, therefore, hyperglycemic. A 
characteristic common to almost all studies that measured the substrate balance in subjects with insulin resistance, diabetes and obesity 
was the use of fixed percentages of VO2 max to control the intensity. However studies have shown great inter-individual differences in 
the use of fats during exercise [4]. Observed that bottom cyclists reached the maximum fat oxidation rate (Fat max) at intensities that 
ranged from 42 to 84% (64 ± 4%) of VO2 max [5] also measured the fat max of triathletes and cyclists and related it to plasma lactate. Fat 
max was found at an intensity of 63 ± 9% and the lactate threshold at 61 ± 5%, with no significant differences between the two. Although  
the Fat max variation was not reported in the study, it was probably greater than that observed in the previous study due to the high 
standard deviation, once again highlighting the inter-individual differences in this variable. Given these results it can be speculated that 
it is possible that the maximum rate of oxidation of fats occurs at different intensities in people resistant to insulin, but the absolute  
oxidation of fats and carbohydrates is not different from that of people sensitive to insulin, when the intensity of exercise is controlled by 
the maximum fat oxidation rate or by the anaerobic threshold. The study by [6] supports this hypothesis. In this study, it was observed that 
the crossover point (point where the relative contribution of carbohydrate metabolism exceeds that of fat in energy production) occurred 
at significantly lower intensities in overweight subjects when compared to subjects with normal weight and the maximum rate of Fat  
oxidation also occurred at significantly lower intensities. However, to date, there are no studies showing whether it occurs

[7] Insulin resistance is defined as a medical condition in which normal or elevated insulin concentration produces an attenuated  
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Abstract
In the years prior to the onset of DM2 symptoms, despite insulin resistance being observed, there is an increase in insulin  
secretion, that is, compensatory hyperinsulinimia, maintaining normal glycemic concentrations until dysfunctions occur in beta cells 
and inability to control glycemia thus leading diagnosis of DM2 (CEFALU, 2001).

Introduction

Insulin Resistance

https://scientiaricerca.com/mrcr.php
https://scientiaricerca.com


19

Citation: Fabiano De Macedo Salgueirosa  and  Maria Gisele Dos Santo. “Diabetes: Insulin Resistance”.  Medical Research and Clinical Case 
Reports 4.1 (2020): 18-24.

Diabetes: Insulin Resistance

biological response. Such abnormality occurs mainly due to the defective action of insulin in peripheral tissues sensitive to insulin such 
as: adipose, muscular and hepatic tissue [8].

Insulin Signaling Mechanisms

Glucose uptake by cells

Insulin triggers several metabolic processes in cells by binding to receptors on the cell surface. Such receptors are found in tissues 
classically sensitive to insulin such as muscle, liver and adipocytes and also in tissues that are traditionally seen as non-insulin sensitive 
such as the brain, erythrocytes and gonads. [9]. The insulin receptor is a heterotetrametric protein with kinase activity, composed of two 
subunits and two, linked by disulfide bridges forming a Figure 2.1) . The  subunit contains the insulin binding 
domain, while the  subunit has insulin-stimulated tyrosine kinase activity [10].

Source: Cheatham E Kahn (1995)

Figure 1: Structure of the insulin receptor

When insulin binds to the sub subunit of the receptor, it causes conformational changes in the receptor, leading to stimulation of the 
kinase activity of the unidade subunit. Once the sub subunit is activated, it auto phosphorylates in at least six tyrosine sites. Following 
activation, the insulin receptor stimulates the transfer of phosphate groups to tyrosine on intracellular substrates of the receptor [9]. 
The first substrate to be characterized was called the insulin receptor substrate 1 (IRS-1). Currently, ten insulin receptor substrates 
have been identified [11], among them IRS-1, IRS-2, IRS-3, Gab-1 and SHC. Spread by the IRS are several tyrosine phosphorylation sites 
activated by insulin stimulation. This phosphorylation of the IRS allows it to bind to certain proteins, among which stands out an enzyme 
called phosphatidylinositol 3-kinase (PI 3-kinase) which is considered the major link between IRS1 and the metabolic effects of insulin 
[9] and the only intracellular molecule considered essential for the transport of glucose [12]. PI 3-kinase consists of two subunits: a 
regulatory one (p85) that allows its connection to the IRS and a catalytic one (p110). The activation of PI 3-kinase is associated with 
the triggering of several metabolic processes such as increased GLUT-4 translocation for glucose uptake, glycogen synthesis and protein 
synthesis.

One of the processes triggered in the cell by the action of insulin is the uptake of blood glucose. To enter cells, glucose must be 
carried by specific transporters. These transporters are called GLUT (glucose transporter) and consist of a group of 5 transmembrane 
proteins: GLUT 1, 2, 3, 4 and 5 that are found in different tissues [13]:
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• GLUT 1 - Widely expressed; high concentrations in the brain, erythrocytes and endothelial cells. It is the constitutive glucose 
transporter.

• GLUT 2 - Found in the kidneys, small intestine, epithelium, liver and β-pancreatic cells. It has low glucose affinity and plays a 
role in modulating pancreatic islets to glucose concentration.

• GLUT 3 - Found in neurons and placenta. It has a high affinity for glucose.
• GLUT 4 - Found in skeletal muscle, cardiac muscle and adipose tissue. It is the insulin-responsive glucose transporter.
• GLUT 5 - Found in the small intestine, sperm, kidneys, brain, and fat and muscle tissue. It is the fructose transporter and has a 

low affinity for glucose.

The only insulin-dependent glucose transporter to perform its action is GLUT 4. As seen, this transporter is found mainly in muscles 
and adipose tissue, and as muscle is the main tissue responsible for the uptake of blood glucose the action of insulin becomes of great 
importance for the maintenance of blood glucose. In the absence of a stimulus such as insulin (or exercise), approximately 90% of  
GLUT 4 is stored within specific intracellular vesicles. In the presence of a stimulus, GLUT 4 moves out of these vesicles, Trans  
locating to the cell surface and connecting to the membrane to capture glucose [12, 13]. In the case of glucose uptake stimulated by  
insulin, GLUT 4 translocation occurs due to the activation of PI 3-kinase, however studies have shown that exercise has a stimulating effect 
on LUT 4 translocation even in the absence of insulin. [14] Observed, for the first time, in muscles isolated from rats submitted to electro  
stimulation that glucose uptake increased by up to 5 times, regardless of the presence of insulin, contrary to what was believed until 
then, that a minimum of insulin would be needed for the increase in glucose uptake observed during muscle contraction. In another 
study [15] also using muscles of rats, it was demonstrated that both insulin and muscle contraction stimulated glucose uptake via 
GLUT 4. In the same study, the authors raised the hypothesis that there are two “pools” different from GLUT 4, one sensitive to insulin 
and the other sensitive to contraction. In a study with humans, [16] studied the translocation of GLUT 4 after a session of 45 to 60 
minutes of exercise on a cycle ergometer at 60 to 70% of VO2max in normal subjects with DM2. The content of GLUT 4 present in the  
membrane increased by 74 ± 20% in patients with DM2 and 71 ± 18% in normal subjects. These results showed that despite defects 
in the mechanisms responsible for glucose uptake via insulin, DM2 patients are responsive to exercise-induced GLUT 4 translocation. 
Since the translocation of GLUT 4 into skeletal muscle, via the insulin-dependent mechanism, is mediated by the activation of PI-3  
kinase, this pathway is

Mechanisms Involved in Insulin Resistance
Insulin resistance occurs when circulating insulin concentrations are not sufficient to properly regulate its processes, resulting 

from a defect in signal transduction [17]. Although the specific cause of insulin resistance is unknown, it is known that problems in lipid 
metabolism, and in particular an increase in the availability of lipids, are strongly related, suggesting that the increase in the availability 
of lipids may upset the interaction between fat metabolism and carbohydrates [18].

It is known that in addition to hyperglycemia, the individual with DM2 almost invariably presents disturbances in fat metabolism, 
often reflected by high concentrations of circulating FFA and TAG, in addition to excessive fat deposition in various tissues, including 
muscle [19]. An example of this are several studies that have shown a strong correlation between intramiocellular triglycerides and 
insulin resistance [20]. Studied young adults with normal weight, using Proton Magnetic Resonance Spectroscopy (1H-ERM) for the 
determination of intramiocellular triglycerides and the euglycemic-hyperinsulinemic clamp for the determination of insulin sensitivity. 
The authors found a correlation of r = -0.692 between the two parameters (Figure 2).

In another study [21] using the same techniques as the previous study showed that children of DM2 patients had significantly  
higher concentrations of intramiocellular triglycerides and insulin resistance than subjects without a family history of DM2. This  
increase in intramiocellular triglyceride content seems to be associated with a reduction in insulin receptor phosphorylation and in  
Pi 3-kinase activity associated with IRS-1 [22]. 
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Several hypotheses have been raised to explain the mechanism by which high concentrations of lipids could cause insulin resistance, 
the best known being the glucose-fatty acid cycle proposed by Randle in 1963 (Figure 3). According to this hypothesis, an increase in 
fatty acid concentrations results in an increase in the intramitochondrial proportions of acetyl CoA / CoA and NADH / NAD + leading to 
a deactivation of the enzyme pyruvate dehydrogenase, an increase in citrate concentrations and inhibiting phosphofrutokinase, a key 
enzyme in the control glucose. Increases in glucose-6-phosphate concentrations would inhibit the activity of the hexokinase II enzyme, 
resulting in an increase in intracellular glucose concentrations and thus decreasing glucose uptake [23].

Figure 3: The fatty acid glucose cycle

SHULMAN (2000)

Recent studies using Magnetic Resonance Spectroscopy (ERM) have proposed an alternative hypothesis to the fatty acid glucose 
cycle. [24] Observed with a lipid infusion, in contrast to the Randle cycle, a drop in glucose-6-phosphate concentrations accompanied 
by a ~ 40% reduction in glucose oxidation. In another study [25] measured, using 13C ERM (carbon magnetic resonance spectroscopy),  
intracellular glucose concentrations after lipid infusion. The authors found a significant reduction in intracellular glucose concentra-
tions after lipid infusion, showing that hexokinase II activity was not reduced, which again goes against the Randle mechanism. The 
authors argue that such findings suggest that the infusion of lipids caused insulin resistance through an inhibition of glucose transport 
activity, since in the same study, a reduction in the activity of IRS-1 associated with PI 3-kinase was observed.

From these studies, the following mechanism was proposed (Figure 4), by which the increased availability of fatty acids could induce 
insulin resistance [23].

An increase in the availability of fatty acids to the cell or a reduction in the intracellular metabolism of fatty acids leads to an  

Figure 2: Correlation between insulin sensitivity and the content of intramiocellular triaglycerides
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increase in their quantity and their metabolites (diacylglycerol, fatty acyl CoA and ceramides). These metabolites activate a cascade of 
phosphorylation in serine and threonine of the insulin receptor substrates (IRS1, IRS2), probably triggered by the protein kinase tetha. 
The phosphorylation of insulin receptor substrates in serine and threonine reduces its activation action of PI 3-kinase, thus reducing 
the effects of insulin such as glucose transport [23].
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